3.313 \(\int \frac {(a+a \sin (e+f x))^3}{(c-c \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=157 \[ \frac {15 a^3 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{5/2} f}+\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {15 a^3 \cos (e+f x)}{4 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}} \]

[Out]

1/2*a^3*c^2*cos(f*x+e)^5/f/(c-c*sin(f*x+e))^(9/2)-5/4*a^3*cos(f*x+e)^3/f/(c-c*sin(f*x+e))^(5/2)+15/4*a^3*arcta
nh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))/c^(5/2)/f*2^(1/2)-15/4*a^3*cos(f*x+e)/c^2/f/(c-c*sin
(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {2736, 2680, 2679, 2649, 206} \[ \frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {15 a^3 \cos (e+f x)}{4 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {15 a^3 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{5/2} f}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^3/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(15*a^3*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(2*Sqrt[2]*c^(5/2)*f) + (a^3*c^2*C
os[e + f*x]^5)/(2*f*(c - c*Sin[e + f*x])^(9/2)) - (5*a^3*Cos[e + f*x]^3)/(4*f*(c - c*Sin[e + f*x])^(5/2)) - (1
5*a^3*Cos[e + f*x])/(4*c^2*f*Sqrt[c - c*Sin[e + f*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2679

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(a*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2736

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^3}{(c-c \sin (e+f x))^{5/2}} \, dx &=\left (a^3 c^3\right ) \int \frac {\cos ^6(e+f x)}{(c-c \sin (e+f x))^{11/2}} \, dx\\ &=\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {1}{4} \left (5 a^3 c\right ) \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx\\ &=\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}}+\frac {\left (15 a^3\right ) \int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{3/2}} \, dx}{8 c}\\ &=\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {15 a^3 \cos (e+f x)}{4 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {\left (15 a^3\right ) \int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{4 c^2}\\ &=\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {15 a^3 \cos (e+f x)}{4 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\left (15 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 c^2 f}\\ &=\frac {15 a^3 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{5/2} f}+\frac {a^3 c^2 \cos ^5(e+f x)}{2 f (c-c \sin (e+f x))^{9/2}}-\frac {5 a^3 \cos ^3(e+f x)}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {15 a^3 \cos (e+f x)}{4 c^2 f \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.05, size = 187, normalized size = 1.19 \[ \frac {a^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (-5 \sin \left (\frac {1}{2} (e+f x)\right )+15 \sin \left (\frac {3}{2} (e+f x)\right )+2 \sin \left (\frac {5}{2} (e+f x)\right )-5 \cos \left (\frac {1}{2} (e+f x)\right )-15 \cos \left (\frac {3}{2} (e+f x)\right )+2 \cos \left (\frac {5}{2} (e+f x)\right )+(15+15 i) \sqrt [4]{-1} \tan ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (\tan \left (\frac {1}{4} (e+f x)\right )+1\right )\right ) (4 \sin (e+f x)+\cos (2 (e+f x))-3)\right )}{4 c^2 f (\sin (e+f x)-1)^2 \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^3/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(a^3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(-5*Cos[(e + f*x)/2] - 15*Cos[(3*(e + f*x))/2] + 2*Cos[(5*(e + f*x)
)/2] - 5*Sin[(e + f*x)/2] + (15 + 15*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(-3 +
 Cos[2*(e + f*x)] + 4*Sin[e + f*x]) + 15*Sin[(3*(e + f*x))/2] + 2*Sin[(5*(e + f*x))/2]))/(4*c^2*f*(-1 + Sin[e
+ f*x])^2*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [B]  time = 0.47, size = 388, normalized size = 2.47 \[ \frac {15 \, \sqrt {2} {\left (a^{3} \cos \left (f x + e\right )^{3} + 3 \, a^{3} \cos \left (f x + e\right )^{2} - 2 \, a^{3} \cos \left (f x + e\right ) - 4 \, a^{3} - {\left (a^{3} \cos \left (f x + e\right )^{2} - 2 \, a^{3} \cos \left (f x + e\right ) - 4 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (4 \, a^{3} \cos \left (f x + e\right )^{3} - 13 \, a^{3} \cos \left (f x + e\right )^{2} - 13 \, a^{3} \cos \left (f x + e\right ) + 4 \, a^{3} + {\left (4 \, a^{3} \cos \left (f x + e\right )^{2} + 17 \, a^{3} \cos \left (f x + e\right ) + 4 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{8 \, {\left (c^{3} f \cos \left (f x + e\right )^{3} + 3 \, c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f - {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f\right )} \sin \left (f x + e\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^3/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/8*(15*sqrt(2)*(a^3*cos(f*x + e)^3 + 3*a^3*cos(f*x + e)^2 - 2*a^3*cos(f*x + e) - 4*a^3 - (a^3*cos(f*x + e)^2
- 2*a^3*cos(f*x + e) - 4*a^3)*sin(f*x + e))*sqrt(c)*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) +
c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 2*c)/(
cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*(4*a^3*cos(f*x + e)^3 - 13*a^3*cos(f
*x + e)^2 - 13*a^3*cos(f*x + e) + 4*a^3 + (4*a^3*cos(f*x + e)^2 + 17*a^3*cos(f*x + e) + 4*a^3)*sin(f*x + e))*s
qrt(-c*sin(f*x + e) + c))/(c^3*f*cos(f*x + e)^3 + 3*c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*f - (c
^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*f)*sin(f*x + e))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^3/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)2/f*(2*sqrt(c*tan((f*x+exp(1))/2)^2+c)*(1/2*a^3/c^2/sign(tan((f*x+exp(1))/2)-1)+1/2*
a^3*tan((f*x+exp(1))/2)/c^2/sign(tan((f*x+exp(1))/2)-1))/(c*tan((f*x+exp(1))/2)^2+c)+2*(1/4*(7*a^3*(-sqrt(c)*t
an((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))^7+81*a^3*sqrt(c)*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan(
(f*x+exp(1))/2)^2+c))^6+53*a^3*c*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))^5-65*a^3*sqrt(
c)*c*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))^4+13*a^3*c^2*(-sqrt(c)*tan((f*x+exp(1))/2)
+sqrt(c*tan((f*x+exp(1))/2)^2+c))^3-33*a^3*c^3*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))+
19*a^3*sqrt(c)*c^2*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))^2+5*a^3*sqrt(c)*c^3)/c^2/(-(
-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c*tan((f*x+exp(1))/2)^2+c))^2-2*sqrt(c)*(-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c
*tan((f*x+exp(1))/2)^2+c))+c)^4/sign(tan((f*x+exp(1))/2)-1)+15/4*a^3*atan((-sqrt(c)*tan((f*x+exp(1))/2)+sqrt(c
)+sqrt(c*tan((f*x+exp(1))/2)^2+c))/sqrt(2)/sqrt(-c))/sqrt(2)/c^2/sqrt(-c)/sign(tan((f*x+exp(1))/2)-1)))

________________________________________________________________________________________

maple [A]  time = 1.17, size = 239, normalized size = 1.52 \[ -\frac {a^{3} \left (15 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{2}-8 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}} \left (\sin ^{2}\left (f x +e \right )\right )-30 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{2}+18 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \sqrt {c}+16 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}} \sin \left (f x +e \right )+15 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}-36 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{4 c^{\frac {9}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^3/(c-c*sin(f*x+e))^(5/2),x)

[Out]

-1/4/c^(9/2)*a^3*(15*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^2-8*(c*(1+si
n(f*x+e)))^(1/2)*c^(3/2)*sin(f*x+e)^2-30*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x
+e)*c^2+18*(c*(1+sin(f*x+e)))^(3/2)*c^(1/2)+16*(c*(1+sin(f*x+e)))^(1/2)*c^(3/2)*sin(f*x+e)+15*2^(1/2)*arctanh(
1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*c^2-36*(c*(1+sin(f*x+e)))^(1/2)*c^(3/2))*(c*(1+sin(f*x+e)))^(1/2
)/(sin(f*x+e)-1)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{3}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^3/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^3/(-c*sin(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^3}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^3/(c - c*sin(e + f*x))^(5/2),x)

[Out]

int((a + a*sin(e + f*x))^3/(c - c*sin(e + f*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**3/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________